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ARSTRACT

Two related silicon compilers developed at MiT's Lincoln Laboratory
with 8 common layout language are examined. The simpler one, the Lincoln
Boolesn Synthesizer (LBS), is & Complementary Metal Oxide (CMOS)
technology based program for generating chips out of arbitrary booleen
expressions. MacPitts, on the other hand, implements advanced programming
language constructs in N-Channe! (NMOS) technology. A study of their layout
language, Lincoin Laboratory’'s LISP-based Layout Language (L5), and its use
1s presented. In addition, there is also & brief discussion of how Macpitts’ »
functfonal repertoire can be changed.
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Modern philosophers like Dreyfus, Haugeland, Heidegger, Husser! and
Wittgenstein take different stances on what constitutes intelligence.2

In the meentime, success in war and peace depends on conﬁputers.
Sensors, controllers and actuators meided into smart machines build cars
round the clock or kill at long range.'Adaitionany, computing machines
process data used in all phases of decision making. The range of use extends
from simple word-processors up to expert consultants.

However, the potential use of computers has only begun to be explored.
And, though there have been many impressive results from computer expert
systems, they have been limited to specific domains of expertise. Therefore,
in order to break through to a new level of processing activity, the Defense
Advanced Reseerch Projects Agency (DARPA) launched a8 major Strategic
Computing (SC) program. (DARPA, 1983, pp 1-18)

SC has a goal of creating a widespread machine intelligence technology

in the United States. It aims at cresting a prototype autonomous land
vehicle, 8 pilot's associate and a battle management system. The SC program
is multi-level and addresses issues from microelectronics to softwere
design. However, several areas, such as vision and speech recognition, which
humans do so effortlessly, are difficult for machines with present
approaches as indicated in this quote (DARPA, 1983, p. 33):

Recent progress in developing vision for navigation has been severely
constrained by lack of adequate computing hardware. Not only are the
machines which are now being used too large to be carried by the
experimental vehicles, but current machines are fer too slow to executs
the vision algorithms in real-time . ...

2 See the bibliography.
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The first problem is addressed by creating a flowchert interface in
which the user graphically creates stste diagrams that are converted for
the user into MacPitts programs. (Weist, 1986)

The second issue is the subject of this thesis: an examination of Lincoln
Laboratory’s LISP based Layout Language (LS) and its relation to MacPitts.
LS 1s a LISP based language used by MacPitts to compile Very Large Scale
Integrated (VLS!) circuits automaticaily. LS is also used by the Lincoln
Boolean Synthesizer (LBS), 8 Complementary Metal Oxide Semiconductor
(CMOS) comptler of arbitrary boolean expressions, to generate combinational
logic circuits.

Both of these compilers have many interacting programs iinked together
to execute automatically. Alteration of this behaviour requires that the
programs, composed of LS and LISP code, be modif{ed.

Therefore, the main questions examined in this thesis are:

® How is LS created?
® How is LS used?
The answer to these questions is given by:
® Introducing LISP;
® Covering LISP extensions needed to create LS (lincoln.);
® Presenting LS;
® Grouping several programs into a “compiler”; and,
@ Modifying a MacPitts functional unit.

LISP fundamentals are covered in Chapter |I. The ideas of functional

programming and other general concepts are discussed. After this overview,

the presentation covers LISP functions and usage. Additionally, & look is




LRSSk -

Appendix A contains & description of alignment problems caused by
incorrect CIF plotting or organelle specification; and, a sketch of how to
experiment in the MacPitts environment.

In summary, this thesis covers LS, a flexible idiom for procedurally
| creating VLSI circuits, and shows how understanding LS makes MacPitts and
LBS accessible for modification.

4 - Ay
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1. Eunctional Programming
/mperative Jangusgss ore based on directing control through a series
of assignment statements. LISP on the other hand applies functions to their
arguments. (MacLennan, 1983, p. 345)

A function takes a combination of arguments and assigns & unique
value to it. A sumctional or applicative lenguage! is built upon a simple
idea that is well illustrated in this quote (Hofstadter, 1985, p. 452) :

A programmer's instinct says that you can cumuiatively buiid a system,
encoapsulating all the complexity of one layer into a few functions, then
building the next layer up by exploiting the efficient and compact
functions defined in the preceding layer. This hierarchical mode of buildup
would seem to allow you to make arbitrarily complex actions be
represented at the top level by very simple function calls.

~“This spirit of functional application pervades both MacPitts and LBS.
But, before looking at LISP's functions, 8 languege for talking about LISP,
Backus Naur Format, is introduced.
2. Dackus Naur Format (BNF)

BNF is a concise set of symbols for describing the syntax of computer
languages. Its key fdea is that the description should 100k 1ike the language
it's talking about (MacLennan, 1983, pp. 166-173). A terse set of BNF
symbols is given below:

e The " < " and " > * indicate syntactic categories. For example, <integer>,
<LISP form>, etc..

e The " := “ means " is defined as .

! Haugeland, 1984, pp. 125-164 gives a very cogent explanation of
several computer architectures [LISP included].

19
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There is another important LiSP object, & iist, dafined beiow:

dist>® = (<atom>*) | ({<atom> | <iist>}*)

A list is a left parenthesis followed with zero or more atoms or
lists, closed off with & right parenthesis. Notice that this is a recursive
definition: a <list> is defined in terms of itself. Examples-of lists are:

0).(a),(ab (c d) e)

Wote that (), mil, is both an atem and a list.

BNF is used throughout this thesis to describe LISP syntax. Li3F's
basic functional format, <lambda function>, can now be analyzed.

3. Lambda Functigns

. One method for writing functions in LISP is with lambda notation. (For
other-function definition formats see Section 11.C.2] Perhaps the easiest
way to understand lambda notation is with this guote showing its histary
(Touretzky, 1984, p. §6):

Lambda notation was crested by Alonzo Church, 8 mathematician at
Princeton University, as an unambiguous way of specifying functions, their
inputs, and the computations they perform. In lambda notation, & function
that added 3 to a number would be written Ax.(3 + x). The A 15 the Grear
letter lambda. '

3 Refer to Sections 11.C.1 and 11.C.3.b. A list can also be viewed in this
hght:
<listy = (<head><taily)
<head> ::= { <atom> | <listy }
<taily = <listy

For example:
0 has <head; := mil and <tail> := mil
(a) has <head> := @ and <taily := nil

(a b (c d) e) has <head> :=a and <tail> .= (b (c d) e)

21




The tambda function format can be named by using the LISP primitive
def® in this manner:

<function-name» ::=
-> (def <function-name> <lambda function>) <CR>
function-name> ::= <atom>

A function created with def is appiied to its argument's parameters

by using its name as follows:
<valuey = -» jdunction-nemexparameten'kCR)

By naming the function, its usefulness is increased. instead of typing
the unwieldy lambda form each time the function is applied, the user simply
types in the function's name. Consider F(x,y) = 3x + y2 defined as a LISP
function named quadratic:

-> (def quadratic
;; <function-name> = -> (def <function-name><lambda function>)
(lambda (n y)
(plus (times 3 n)(times y §))))<CR>
;» LISP returns <function-name):
quadratic

This function, quadratic, is applied by using its name with
parameters:

-> (quadratic 2 3)«CR>
;; (quadratic <x><y>)
15

-> (quadratic (quadratic -1 2)(quadratic 2 3))«CR>
;; (quedratic -1 2) := 1 & (quadratic 2 3) := 1S
;; (quadratic 1 1S) := 228

228

6 See Section 11.C.2 for another method for defining functions [ defun }.

23
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static variable: a voriable that is allocated before execution of the
program begins and that remains allocated for the duration of execution of
the program.

varisbie (F)(VAR)
(1) in computer programming, & cheracter or group of characters that
refers to a8 value and, in the execution of a computer program,
corresponds to an address.

(2) 8 quantity which can assume any of a given set of values. ...

Three more terms need to be defined: A Aound varisble is one of a
function's formal parameters (function's argumentsl. A g/aba’ varisb/e has
its value set at the top level. A /rae variat/e is not & bound variable, but its
value is used or changed by a function. (Wilensky, 1984, pp. 39-40) Now that
the terms have been defined, the concept of variable scoping can be
examined. |

There are two basic veriable scoping techniques “-- static scoping
and dynamic scoping. In static scoping (also called lexical scopthg) a
procedure is called in the environment of its definition; in dynemic scoping
a procedure is called in the environment of its caller.” (MacLennan, pp. 112-
113, 1983). In other words, (MacLennen, p. 109, 1983):

e |In dynamic scoping the meanings of statements and expressions are
determined by the dynamic structure of the computations evolving in time.

e In static scoping the meenings of statements and expressions are
determined by the static structure of the program.

Franz LISP is a dynamically scoped language.” Therefore, bound
variables which are changed during a function call are restored to their
original vaiues upon exiting the function. If calls to other functions are

7 COMMON LISP is a lexically scoped language (Winston, 1984, p. 54).
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-> (defun?® test (hound)
(setq bound (1+ bound))
;; bound := bound + 1
;» The symbol “free” is not bound within the context of test.
(+ bound free))«CR>
;; the result := bound + free
test

_=> (test free)«R>
;s First, “bound” assumes “free's" vslue: bound := free's value := 2
;. Second,bound :=bound + 1 =2+ 1:=3
;; Third, the resuit .= bound + free :=3+2 =5
S

In contrast if LISP used ca/] by referance
(1) bound :=free:=2 '
"~ (2) "bound” increments: bound := bound + 1 := 1 +2=3
(3) since bound := free, “free” also becomes 3: free := 3
(4) the result is: bound + free :=3+3=6
in summary, Frahz Lisp resolves the problems of variable context and
scoping by using call by value and dynamic scoping. This issue can be
extended to functions. Next, consider how functions refer to other functions
or to themselves. |
S. Recursion and Iteration
LISP allows functions to refer to themselves. This approach, known as
recursion, is briefly introduced in this section.!0 Suppose a function that

raises a given integer base to a nonnegative integer power is desired. Two

9 lofl_l is an alternate methad of defining functions, see Section 11.C.2.

10 A more in depth discussion of recursion is given in Section 11.C.4.
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B. INTERPRETED, COMPILED OR DUMPED LISP
The Interpreter allows interactive running of LISP programs and provides
an effective environment for debugging LISP code. At the same time, LISP
also provides a compiler which can considerably speed up program execution
for large code segments. This section examines the different ways LISP can
be run and covers very basic input and output.
1. The LISP Reod-Eval-Print Loog: Interoreted LISP
In Se_t:tion 1LA.1, several examples showed how the LISP interpreter
“reads” and "evaluates” input, and then “prints” out a result. This read-eval-
print loop is discussed in this section. The two major participants in this
cycle, ewal and quets, ore also covered.
> a.The LISP Prompt * > =, Start * (* and Stop~) *
To obtain = -> °, so that <LISP formys with " (- and ) " can run,
the Franz Lisp interpreter is invoked by typing lisp after the UNIX® prompt:

2 HspcR

Framz Lisp Opus 38.69
->

The ° -> ° is a prompt sign which meens that inputs will be
“evaluated” or “interpreted”. An open perenthesis, = ( °, instructs the
interpreter to do whatever follows, and a closed perenthesis, ° ) °, tells the
interpreter to stop doing it. (Wilensky, 19684, p. 2X(Hesemer, 1964, p. 6)
Therefore, if the user inputs: (ples 1 2 3) <CR>, the ° ( ° starts the LISP
interpreter “plusing” 1 with 2, then with 3, and stops “plusing” upon
reaching * ) . For example:

-> (plus 1 2 3) «CR>
(]

29
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<LISP form>s!3 or
<expression>s
/ \
<atom»s <list>s
/ \
<numbers  <symbol>s
/ \
<floating-point> <integers

Figure 2.2 The LISP Object Hierarchy
Examples of these LISP objects are shown in Table 2.1:

TABLE 2.1

EXAMPLES OF LISP OBJECTS
LISP Objects Examnle LISP Code
® <LISP form>s (plus 1 2),1.23,(* (plus 1 2) 3), ...
o <list>s 0, (((q w)(e) 1 2)),(plus 1 2), ...
e catom>s 1,1.1,8, weman, . ..
@ <symbol>s a, men, we223, A%err, ...
® <special symbol>s e\, %, L0, .e 1

it seems that LISP is always sesrching for a value. The ne#t

section answers the question: "How does it accept something literally?”
c. Eval's dual: queteor= ‘"

When evaluation is undesirable it is inhibited with quete or its
abbreviated form, a quote mark. The ° * ° ig a <special symbol> that stops
evaluation. This ides is evident from the syntax:

<LISP form> == -> {(quete <LISP form>) | *<LISP form»}<CR>

13 Refer to Sections 11.A.2, 11.A.3 and I1.C.1.

14 °\" [backslash] is an escape cheracter. * ,” and ° ,@ ° are described in
Section I11.A.1.2
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However, there are errors where execution might not be stopped by

the Interpreter?3. In that case, LISP can be stopped with an interrupt. The
first control C [ “€ ] sets an interrupt flag: the system waits for a “safe”
place to exit. The second “C forces all system calls to compiled code to
check the interrupt flag; and finally, a third ~C causes an immediate
interrupt. (Foderade, 1983, Section 10.6) Here is an example:
“C“C°C
Interrupt: °C

Break nil
<1

An interpreter is a useful interactive tool; however, to handle
large programs and obtain efficient object code, 8 compiler is needed.

. Compilation of LISP programs increases their execution speed. In
order to keep compilation dependencies among several programs
stroightened out, a makefile is used. In addition, @ mekefile can join
together several programs so they can run as a large unit.

a. The Compiler
The Fronz Lisp compiler is invoked from the UNIX® C-Shell with
the following command (Foderado, 1983, Chapter 12):
% liszt [-<option>*] <filename>
There ore several options, among which, q [compile in quiet mode]
ond = [create a cross reference file] are very useful. The compiler can be run

with several options at one time as follows:

15 Richard Hamming has jokingly said that perhaps computers do in fact
show free will, it's just that people always call a repairman when they do
it.
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Consider the following example makefile composed of four
dependent resuits [L3.e, Werk, clean, ond @ecl. The desired resuits are

separated by a colon from their prerequisites and placed on the same line.
Notice that two results, cleam, and dec, have no associated prerequisites.
The next 1ine contains the actions to create each result. Assume that ail of
this code is in a file named ~ Makefile ~ in the user's directory which
contains LS. and lincoinl. Makefile’s contents are now presented, and
described immediately afterwards [the explanation continues into Section

11.B.3: i
L3.8: L3.] linceln.e
liszt -qu LS

werk: L5.e lincein.e
eche!’ “(eval-when (epal)\!8
(lead ‘lincein.e)(lsad ‘LS.0)\
(dumplisp'? werk)(exnit))" | lisp

cliean: rm20 -f LS.e lincein.e

'7 The eche command prints out its arguments. The function, ewal-
when, tells the LISP compiler to evaluate the expressions that follow,
instead of compiling them. (Wilensky, 1983, 281)

18 The backslash ° \ " is an escape character, therefore the next line is
treated as a continuation. The * | “ stands for “pipe”, i.e., the results of the
first process are passed on to the next process.

19 Saves the LISP environment in an executable file named “work". Typing

“work™ will then recreate the LISP system as it was running when it was
dumped.

20 Forced removal of files.
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‘creating an “environment” that contains ail the programs. This is what the
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Enampies array.} tep.l

INSTALL bin entract.]
LS. c-reutines.c sim.]
Makefile

# And finally, back to the UNIX® prompt.

%
LISP files which are dependent on each other can be organized using
o mekefile. They can also be individually loaded into the interpreter and
saved as one executable file using dumplisp.

3.1 n iled LISP: dumpli
in some programming languages disparate programs can be combined

to form a working unit using o linker. In LISP this can be achieved by

werk section of the example makefile created in the previous section does:

% make werk«(CR>

# Execute the actions under the “work™ heading of this meakefile.
eche "(eval-when (eval){lead ‘lincein.e)(load '1L5.0)

(dumplisp werk)(enit))® | lisp

# Load lincoln.o, LS.0 and organelles.o into LISP, dump this envi-

*ronment in an executable file named “work" and then exit LISP.
Framz Lisp, Opus 38.69

-> [fasl lincein.o]

;; fasl is the function LISP uses to load object code files.

-> [fasi LS.e]

%

In summmary, an executable file, werk, has been created. Typing
werk as an imperative command places the user in LISP with the functions
in LS and lincoln also available.

2 werk«R>
-
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% cat .lispre<«CR>
* The UNIX® “cat” command dumps the file ".1isprc” onto the
# terminal screen.
(eval-when (load eval)
(lead ‘lincein.o)
(lead 'L5.9)
(lead ‘erganelles.e) )

Since LISP automatically loads the .lisprc file [in this case all that
the file contains is one large ewal-mhen <LISP form>], then the result is

that all three lead functions are evaiuated and the files loaded in.

2 lisp<«CR>
# The lisp interpreter is invoked and the .lisprc file is 10aded.

Framz Lisp Spus 38.69
->

-~ The user is now in LISP with the three files loaded. The main
difference between using this method end dumplisp is that a dumped file
usually requires at least & megebyte of storage, whereas loading several
files using the .lisprc file takes a short while.2® in Chapter V.A and Appendix
A.B it will be seen thoet the MacPitts and LBS environments can be invoked by
typing their respective names without any arguments. For example:

% macpitts [or Ibs]
usage: macpitts <filename> [<optisas>]
->

A closer look is now taken at how files are input into LISP and how

functions can be output into files.

23 A compromise between these two approaches is to use the autorun
option when compiling a LISP file [e.g., % liszt -r <filename>]. This creates
an object file which has a small piece of bootstrap code attached. The |
object file can then be run as an executable file. (Wilensky, 1984, p. 284) |
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The pretty print function can also be used to send <LISP form»s to 8
file tn the following fashion:

-> (pp2¢ (F temp.l) m-to-the-a)CR>
;; Qutput the function m-to-the-n to the file temp.l.
t

Conversely, a <LISP form> can be read from a file, without being
evaluated, using read:

-> (read (infile 'temp.1))<CR>
;; Read the next <LISP form> from the temp.] file. When the end of
;; file is reached then nil is returned. The <LISP form> is not
., evaluated when read. To do so eval must be explicitly used. For
;; example: (eval (read (infile "4-flags))), where 4-flags has a
;; <LISP form> that needs to be evaluated.
(def m-te-the-n
(lambda (m n)
(cond ((Zerep n) 1)
(t (times m (m-te-the-a m (1-a)))))))

-> (emit)«CR>
;. Leave LISP and then output temp.1 to the screen using cat

26 Other functions that are used for output are nt.- and primt. Their
syntax is similar:
<LISP form) ::=
-> (patem ['I<LISP form> [(sutfile <filename> [*a]}])<CR>
<LISP form>:=
-> (priat [')kLISP form> [(wwtfile <filename> [*a]}])<CR>
These functions both output to the terminal if the optional outfile
argument is not given [the ‘® appends the output to the previous file
contents, otherwise they are wiped out]. Because these functions do not
send carriage returns when they finish their output, they are usually seen in
conjunction with (terpri [(ewtfile <filename> [‘al) which outputs a
terminate line character sequence. For example:
-> (patem ‘| Step printing. I)(terprlkCR)
Step printing.
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1. LISP's Basic Structyre: The List

A function and a 11st of data 100k the same In LISP. For example, the

next <LISP form>,

(replace-item-peints inverter new-points),
is an application of a function [replace-item-peiats] to its arguments
[imwerter and new-peints); or, it can also be a list of three elements
[replace-item-peoints, inverter and new-points).

which one it it? It is bothi A LISP program is a list, and ewal
normally applies the list's head as a function to the list's tail. If the list is
quoted, then it's treated as data. (MacLennan, 1983, p. 348)

Atoms and lists are referred to as symbolic espressians. Expressions
are called sarms if they are to be evaluated. “Considered as data, a list may
be called an expression; considered 8s 8 piece of procedure, the same list
may be called a form". (Winston, 1984, p. 20)

With these ideas in mind another look can be taken at the procedure
for LISP function definition.

2. LISP Function Definition: def and defgn?’

Up to this point the reader has seen functions that take a fixed
number of arguments all of which are evaluated. This class of functions is
called an axpr. There are three other categories: 7axar, Jexpr and meocros?8.
An fexpr takes an unlimited number of arguments, but does'nt evaluate them.

27 See Section 11.A.2 for function definition using def.

28 Macros are discussed in Chapter |11
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For example, 8 function that finds the logsrithm base 2 of a number
can be derined 1n LISP as follows:

-> (defun leg-two (number Soptisnal (base 2))
;. The primitive LISP function quatient finds the quotient of two
;; numbers, and log finds the natural logarithm of a number. The
;; optional argument “base™ defoaults to a value of 2 if @
;; parameter is not given for it.

(quetiont (log number)(leg bass)) )CR>
;; Find the logarithm base 2 or the given base of a number.

leg-twe

This function is applied in the following ways:

-3 (leg-twe 13)CR>

;; {log-two <number>)

;; Find the 10g base two [defaul] of 13.
3.700439718141092

-> (leg-twe 13 18)«CR>
;; Evaluate the base ten log of 13.
1.113943352306837

Another way to define this lexpr is as follows:

-> (defun leg-twe a
;; In this format, the symbol “n”, will be bound with the number
;; 01 arguments supplied. The function arg gives the parameter
;, associated with the position corresponding to the number it is
;, given, '
(quetient
(leg (arg 1))
;; If & second parameter is provided use its value, if not use 2.
(leg (cond
(O n 1)(arg 2))
t2)))) ker>
leg-twe

The third functional class, an fexpr, doesn't evaluate its arguments
and takes a variable number of them. Nothing comes for free though, the
flexibility of a variable number of inputs is offset by the overhead of
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3. Erequently Used LISP Functions

A synopsis of common LISP functions i1s presented to briefly
famtltarize the reader with LISP's syntax. First, a 1ook at functions used to
give values to symbols.

a. Binding Variables: set, setq, let and let*

Variables are assigned values with set or setq [set quotel
Although set only takes one symbgol at a time, it has 8 similar syntax to :
setq:

(set {I"'lxsymbob>} {["KKLISP form>}) ;
(setq {<symbol> ['KLISP form>}*)

These two functions are applied as follows:

-> (set '8 ‘(a b c))CR>
;; Set "A” to have the value “(a b c)".
(abc)

=y

-> KCR>
;; A's value is (abc).
(abc)

->(setqa B A C'(123)0 (plus 1 2 3))CR

. The <symbol>s are unevaluated, but are respectively assigned

;; the results of evaluating the <LISP form»s. setq returns the

;; value of the last evaluation it performs.

sB=AC=(123)andD:=(plus 123):=6 t
6 _

;; B's value has been set to A, but A:=(abc). '
(abc)

->» C«CR>
;; C's value is (1 2 3).
(123)
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The variables are restored to the values they had prior to
participating in the lel® construct. with these methods of variabie
assignment in hand, a 1ook is now taken at list manipulation.

b. List Selection: car ,cdr33, nth, and nthcdr

LISP is based on the application of functions to arguments. The

syntax of LISP generally has a structure of the form:
(<function-name><argument>*)

Therefore, it seems natural to have a selector that picks the first
element of a list, the “function”, and another selector that returns aii the
elements of a list except the first, the "arguments”. These selectors arz car
and cdr:

<heady ;= -> (car <listy)<CR»
<taily = -> {cdr <list>)CR>
Jisty ;= (<heady<taily )34
<head> ::= <LISP form>

«taily = <LISP form>

The application of these basic selector functions is shown below:

-> (car '(plus 1 2 3 4))CR>

;o (car <listy)

;; car selects the first {"function” or "head"} list element
plus

The " ta1l” selectdr, cdr, is used as follows:

33 car and edr were assembly language instructions for the I1BM 704 on
which LISP was first implemented. An instruction was divided up 1nio
fieids. Two of the fields were named the &doress and decrement . car and
cdr were the instructions for getting the contents of the address pointed 1o
by these fields. (Charniak, 1985, p.48)

34 Compare to the definition of a list in Section |1.A.2.
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-> (nth J ‘(and In those days it came te pass))«CR>

.. (nth <index><list»)

;» Starting at 0, return the indexed argument of the given list.
days

->(athcdr 2 ‘(hylomerphism: all is foerm & matter))«CR>
;; (nthedr <indexy<list>)
;; Starting at 0, return the indexed cdr of the given list.

(ferm & matter)

Lists can be separated into their components with the functions
covered in this section; but, how are they built up?
c. List Construction: cons, append and list
The 1ist selectors car and cdr separate a list into its “head" or
“function™ and its “tail” or "arguments-. The list constructor ceas is their
dual: 1t synthesizes a “head" and :'tail" into a list. (Winston, 1984, p. 29-31)

<list> == -> (coms ["Ikhead> [')tail>}<CR>
<list> == (<head><taily) := -> (coms *<head> "<tail>)<«CR>
<head> := <LISP form>, and <tail> ;= <11st)>S

Therefore, in order to synthesize a list out of two parts:

-> (coms ‘plus ‘(1 2 I)CR>
:; (cons '<head> "<tail>)
(plus 1 2 3)

To creote lists use list with this formet:
<listy == -> (ist { [")<LISP form> }*)<«CR>
An example that makes a list out of several arguments is:

-> (list ‘This 'is 'a 'jeined ‘seantence!)«CR>
;; Make a list out of the following elements.
(This is a jeined sentencs!)

35 In actuality an atom can form the tail element, this produces a dotted
list, e.g., (<head>.ctail>)
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-> (apply ‘append ‘((a b)(c d)(e 1)))CR>
(abcdel)

funcall is similar to apply, except that it accepts each parameter

for the function individually. it has this format.:
<value.> == => (fumcall <function-name> { [*}<parameter> }*)<CR>
Examples of fumcall now follow:

-> (funcall ‘plus 1 2 3)«CR>
;; {(funcall <function> { ['l<parameter}* )
6

=> (funcall ‘append ‘(a b) ‘(c d) ‘(e 1))CR>
(abcdel)

Up to this point, functions can be applied sequentially to each
other; but so far, there is no wdg to conditionally apply a function. In order
to build control structures that can do this, the idea of a predicate is now
introduced. |

e. Predicates (the Values t and mil) and the cend Control Structure

A predicate is a function whose value is either true or false. The
LISP symbol for true is t and for false it's mil. In LISP any non-mil value is
considered to be true. Both t and ail evaluate to themselves. The empty list
is also called mil and is the only LISP expression that is simultaneously a
list and an atom! (Winston, 1984, p. 44-46)

Therefore, the following is true:

{ t1mil} = -> (cpredicate><LISP form>*)<CR>

Many LISP predicates end with a p, e.g. listp, minusp, etc., but
there are important exceptions such as: atem, mull and equal. (Touretzky,
1984, pp. 14-17) So, for example:

53




S N

-> (and)<CR>
;; 11 “and" has no arguments it returns t.
t

-> (amnd 1 2 (plus 2 3))«CR>
;; If all its arguments are non-nil, then “and" gives the value of
;; its last argument; otherwise, if any argument evaluates to nil
;; the result is nil.

35

-> (erkCR>
;; 1T “or” has no arguments it retums nil.
nil

=> (or (zerep38 1)(* 3 S)(Q)CR>
;> Returns the first non-nil value, otherwise if all its
;; arguments evaluate to nil, * or ~ returns nil.

135 :

In another example, examine how 8 predicate, member?3° is
constructed using conditional tests and the LISP function member:

-> (member ‘a ‘(b c a d e))<CR>
;. member returns a list that starts with the first instance
;; of the element that is being checked for membership in a
;; list.
(ade)
The code for the member? predicate is now shown. Observe that

" list © is a parameter and not the list function:

38 -> (zerep 1)«R>
mil
-> (zersp 8)<«CR>
t

39 See Chapter 111 for a description of lincoln.l. In lincoln.) predicates
usually end witha "2 "
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-> (defum match-that
(thing list predicate Feptional tall)
(cond
;; This is the recursion's basis condition:
. If the list is empty, then all the results are in the tail.
., Since the first elements are being consed into the tail
;; 1irst by the application of match-that to the remsinder
;; of the list, (cdr list), when the basis condition is met,
;> all the element in the tail will be backwards.
;. Therefore, reverse them and return this as the resuit.
., This is the Basis Condition: stop if the list is empty.
((nuli? list)(rewerse tail))
;; The list wasn't empty, therefore, apply the predicate
;; to the element’s head. If the predicate is satisfied,
;» place the head in the list called “tail”.
;. This is a Recursive Condition: apply the predicate to
;; first 11st element, (car 11st), and match-that to the
;; rest of the list, (cdr list).
((funcall predicate thing (car list))
(match-that
thing
(cdr list)
predicate
(coms (car list) tail)) )
.. Since the 1ist wasn't empty and the head element did'nt
.. satisfy the predicate, apply this algorithm to the rest
;» of the list. Another Recursive Condition.
(t
(match-that thing (cdr list) predicate tailo«CR>
;» LISP returns the function's name .
match-that

Predicates can also be used in iterative control structures.

40 The ° 1 = is a right superparenthesis. A right superparenthesis can
substitute for as many regular parenthesis, " ) - as would be required to
close off the <LISP form>. However, the count stops as soon as & left
superparenthesis, “ [ °, is encountered. (Wilensky, 198S, p. 42)
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The setq's are used to assign vaiues to ?Oﬂﬂbles within the context
of the preg. As an exampie, review this definition of 8 factorial function:

-> (defun facterial (Integer)
;; Bind local variables to nil.
(prog (result)
;; Initialize local variables
(setq resuit 1)
;; A loop that will find the factorial of a positive integer.
loep
;; IF the integer is zero then exit the prog and return the resuit.
(cond ((zerep Iinteger)(return resuit)))
;, OTHERWISE, muitiply the integer by the accumulated resuit,
;» then decrement the integer by one and repeat the loop.
(setq resuit (* integer ressit))
(setq integer (1- integer))(ge Isep) ) )«CR>
facterial

A more structured iterative syntax, which can do everything prog
does, uses de or de* (Winston, 1984, p. 86):

(de ({(<veriable> <initial-value> <update-form>)}*)

( <end-test> <LISP form>* <result-form>}) <body> 42
<end-test> := <test form>43
<result-form> == <LISP form>, and <body> ::= <LISP form>*

However, if an action is to be performed across lists, then “the
lazy men's do loop”, mapcar, can be used. (Winston, 1984, p. 79) For
example, given the LISP primitive zerep, a list's elements can all be
checked for equality with zero in one fell swoop:

-> (mapcar ‘zerop ‘(1 8 2 8 8 2))«CR>
(wil t mil t t nil)

42 See Section 11.C.4 for an example of de.

43 See Section 11.C.3.e for <test form>'s format.
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-> (defum m-te-the-a (m n)
(de*S ((resuit 1 (* m result))
(power n (- power 1)))
((zerop pewer) resuit)))<«CR>
;; Raise a number to a positive power: mr.
m-te-the-n

=> (m-te-the-a 2 3)«CR>
;; result, := 1, power := 3, (2erop 3) := nil
;;resulty := (* 2 1) := 2, power := (- 3 1) := 2, (zerop 2) := nil
;; resultz = (* 2 2) := 4, power := (- 2 1) := 1, (zerop 1) := nil
s resulty = (* 24) := 8, power := (- 1 1) := 0, (zerop 0) := t
|

Recursion accomplishes indefinite repetition “by having a function call
itself during its execution.” (Wilensky, 1984, p. 73) A recursive
implementation of m-te-the-a (Winston, 1984, p. 64):

-> (defun m-to-the-n (m n)
;; The exponent [ n ] should be a non-negative integer.
(cond
;; Test to see if the exponent [ n ] is zero,
;; if it is, return a value of one.
;; This is the Basis Condition.
((zerep n) 1)
;» 11 the exponent is not one, then
;; multiply m by (m-to-the-n m (1- n)), nb,,
;; the recursion will end since n will be reduced
;; to 2zero and (m-to-the-n m 0) is one!
;; This is the Recursive Condition.
(t (* m (m-te-the-n m (1- n)4))) ) ) ICR>
m-te-the-a

43 Refer to Section 11.C.3.e for de's syntax.

46 1- decrements by one, while 1+ increments by one.
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logical error. The three basic functions assoctated with these programs are
trace, debug and step.47 To see how they work, recall facterial:

-> (facterial*® S)«CR>
;SRqRIN2*] = 120
128

The operation of zersp can be observed using trace, as follows:

-> (trace zerep)<«CR>

[autelead /usr/lib/lisp/trace]

[fasi /usr/lib/lisp/trace.s}

;; The tracer returns a list of functions being traced.
(zerep)

Now, every time that zerop is used its associated values are shown:

-> (facterial 5)<«CR>
1 <Eater> zerop (5)
1 <ERITD> zerop ail
1 <Enten> zerop (4)
1 <ERIT> zerep nil
1 <Enter> zerep (3)
1 <ERITD> Zzerep nil
1 <Eater> zerep (2)
1 <ERID 2zerep nil
1 <Enter> zerep (1)
1 <ERIT> Zzerep nil
1 <Enter> zerop (0)
1 <ERIT> Zereop t
129

47 For discussions of these areas see:
(Foderado, 1983, Chapter 11 [Tracer], Chapter 14 [Stepper],
Chapter15S [Debugger] and Chapter 16 [Editor])
(Wilensky, 1984, Chapter 11 [Debugging])
(Charniak, 1985, Section 2.8 [Debugging))
(Winston, 1984, Chapter 14 [Debugging])

48 Defined in Section 11.C.3.1.
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(setq Integer (11-| Integer))n2«CR>
2 .
(go leep)
(cond ((zerop integer) (return resuit)))
(zersp integer)d«CR>
;; 6o into debug mode. Usually invoked with: (debug)
[fasl /usr/lin/lisp/fin.e)

;; Obtain a listing of debug commands using help.

: help<CR>
u/un/uf/unf

up/upn
d/dn

ok / go

redo / redo f
step

return e

edit

editf / editf f
iop / bot
p/pp

where
help/h/?

help ...
pop / °d

65

go up, i.e. more recent

{n frames) (of function f)
go up to next (nth) non-
system function

go down, i_e. less recent
(oppesite of u and up)
continue after an error or
debug loop

resume computation from
current frame (or at fn f)
restart in single-step
mode

return from call with
value of e (defauit is nil)
edit the current stack
frame

edit nearest fn on stack
(or edit fn f)

go to top (bottom) of
stack

show current stack frame
(pretty print)

give current stack posi-
tion

print this table --
Jusr/lisp/doc/fixit.ref
get the help for ... -

exit one level of debug
(reset)
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funcall-evalhook*®

evalhook*®

(zerep integer)

(cond (<** (return resuit)))

evalhook

continue-evaluation

funcall-evalhook*

evalhook*®

(cond ((zerep integer) (retura resuit)))
(preg (resuit) (setq resuit 1) leep ...)
evalhook

continue-evaluation

funcall-evalhook*®

evalhook®

(preg (resuit) (setq resuit 1) leep ...}
(factsrial 3)

evalhook :

continue-evaluation

funcall-evalhook*

evalhook®

(facterial 3) _
;; The stack has LISP system function calls interspersed
;; with the factorial function. A handy feature of the
;; error loop is that the current variable values can be
;, easily obtained. Showstack returns nil.

nil

;» What is the “integer” variable’'s value?

<1>: integer«CR>

2

;; What is the “result” variable’s value?

<1>: result«CR>

3

;» Leave the error 100p.

<13: (reset)«CR>

[Return te top level]
Hopefully, this very brief l1ook at some LISP programming tools will
encourage the user to experiment with them. The next section reviéws the
salient points covered up to now.
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_languages) are data objects that can be passed as parameter' to oth

e Lisp functions (equivalent to subroutines or procedures in

"f""

functions. This makes it possible to write extensible contrat 3 ucturo
user programs that are very difficult to duplicate in more traditi
languages.

O()
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1. Data Abstraction and Macros

Abstraction of low level functions can aid understanding. For

example, the unmnemonic car might be renamed head:

-> (defun head (u){(car u))CR>
head

-> (head ‘(R B C D))«CR>
!

The mnemonic quality of this new function is offset by the overhead
of having a user defined function calling a LISP system function. The LISP
function car takes one instruction, but a user defined function takes five or
more instructions! (Brooks, 1984, pp. 179-180)

Since data abstraction is an important programming tool, the cost of
the extra function calls in compiled code is removed by the use of macros.
"A macro is a function which accepts a Lisp expression as input and returns
another Lisp expression.” (Foderado, 1983, p. 8-3)

A macro is efficient because it creates code that the LISP interpreter
evaluates only once. Subsequent calls to the macro use the expanded code
(Wilensky, 1984, pp. 180-195). The function defmacre (define macro] is
one of three ways to create a macro (Foderado, 1983, p. 8-3). For example:

<macro-name> :=
-> (defmacre <macro-name> (<argument>*)<LISP form>*)<CR>

<macro-name» :=
-> (def macro-name> (macre (<argument>}<LISP form>*))<CR>

<macro-name» ::=
->(defun <macro-name> macre (<argument>)<LISP form>*)<CR>

A macro is applied just like a function:
<valuey := => (<macro-names><parameter>*)<«CR>
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the backquote macro: expressions are not evaluated unless specified.
(Foderado, 1983, pp. 8-3,8-4) fhe symbol for inhibiting evaluationis * § *

’

for evaluating “ , ° and for evaluating and splicing into a list * ,@ ~ .
»
(Wilensky, 1984, p. 202) These symbols can be applied in succession, as :
| composite operators, and are summarized in Table 3.1 below: 2
‘ TABLE 3.1 q
BACKQUOTE MACRO SYMBOLS E
i $ Inhibit one level of evaluation ¥
| . Evaluate [within the context of * § ") -‘.;
| @ Eveluate and append N
| $, or,$ No-ops, they can be removed.4 .
. ,@%()or,@() No-ops ot
$(.x) (list ») 5
$(,x ,8y) (cens u g) [y must be a list] =
$(,ex ,ey) (append x g) [x & y must evaluate to lists) !
$(.e'x ,ey) (append 'x ‘y) [x and y must be lists] -
So for example, if the variable 8 is set to have as its value the list E§
(1 23), theeffectof “$ ", ", and ",@" can be observed: E:'_f
-> (setq 8 '(1 2 I)CR> S
;; The variable "A” is assigned the list * (1 2 3) " as a value. <:
(123) 3
-> $(R ,8 ,@A)CR> ~
;» T AT is unevaluated, " ,A " is evaluated, " ,@A " is evaluated and B
;; spliced into the list structure. 3
@(123)123) 2
¢
o
4-> $((a b) (C D) ,@'(e 1) ,@'(6 M)CR> o
.~ ,@ " acts as 8 composite operator: ,@(quote (<argument>)) 2
,; S0, first apply quote, and then " ,@ . s
((eb)(CD)efEN) 3
a3
& %
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The backquote macro is frequently used in writing macros. It's used to b’
create a template of the code the macro will provide to eval, for example: p

-> (defmacro head (i) $(car ,H))<«CR> 3
;; Equivalent to: (defmacro head (X)(list ‘car X)) :
head 4

These ideas are all brought to fruition when functions that generate
other functions are made. A good example is the defstruct [define

structure] macro3 This macro consists of two levels. The lowest level
creates the desired function according to a template. The upper level
evaluates the function that was created. A brief sketch and a bit of the LISP
code demonstrates the idea®

eval

| .
defstruct ;
/ \
eval eval
/ \
defstruct-short defstruct-long

Figure 3.1 The Defstruct Function Hierarchy

‘v .
AP

The code that follows reflects the structure in Figure 3.1. There is a
meain eval-when form that evaluates the defstruct function. This
function in turn has two eval-when forms in it. They will either evaluate

LA RAIRS

S See Section 111.C for more detail on defstruct.

6 The reader should skim through this code looking at how the evaluation
statements are nested with macro or function definitions. Look at the code's
form and the extent that it “shows” the macros it is generating. The LISP
function ewal-when tells the interpreter or compiler to evaluate this code "
when it is loaded into LISP. S
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As an example, a list with fields "name” and “age” will be called &
“man”. Examining the results from the bottom up shows how functions are
first created and then evaluated into the LISP environment. First the lowest
level functions defstruct-short-fields and defstruct-replace-
fields create macro definitions in the following fashion:

-> (defstruct-shert-fields ‘men ‘(name age) 1)CR>
;; Since there are two fields two selector macro definitions
;, are made. They are raturned in a list.The resuits are:
;; A macro definition that selects the name field: man-name.
((def man-name (macro (body)$(car ,(cadr body))))
;; A macro definition that selects the age field: man-age.
(def man-age (macro (body)$(cadr ,(cadr body)))))

-> (defstruct-replace-fields 'man ‘(name age) 1)CR>
;; Since there are two {ields two mutator macro definitions
;; are made. They are retuimad in a list.

;; A macro definition that replaces the name field with a8 new
;; value is created and called replace-man-name.
((def replace-man-name (macro (body)$(append
(list ,(caddr body))(cdr ,(cadr bady)))))
;; A macro definition that replaces the age field with a new
;; value is created and named replace-man-ege.
(def replace-man-age (macre (body)$(append
(list (car ,(cadr body)),(caddr body))
{cddr ,(cadr bedy))))) )

The above results are now spliced into a iist .of macros:

-> (defstruct-shert ‘'man ‘(name age))CR>
;» The macro definitions are spliced into a list:
((def make-man (macre (bedy) ... )
(def man-name (macrs (bedy) ... )
(def man-age (macrs (bedy) ...)
(def replace-man-name (macro (body) ... )
(def replace-man-age (macrs (bedy) ...} )
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(def defstruct-long
(lambda (type bedy)
(coné ((null bedy) ()
((or (nuil (cdr bedy))
(list? (car bedy))
(atem? (cadr bedy)))
{err ‘| invelid defstruct syntan|))
(t (append (cons (list ‘def
(cencat ‘make- (car bedy) ‘- type)
(list ‘macre
‘(bedy)
(list ‘cons
“list
(list ‘cens
(list ‘list
"quete
(list ‘quote
(car bady)))
‘(cdr bedy)))))
(cons (list ‘def
(cencat ‘Is- type '- (car bedy) '?)
(list ‘macre
‘(body)
(list ‘list
n.'
(list ‘list
“car
‘(cadr bedy))
(list ‘list
“quete
(list ‘quete
(car hedy))))))
(append
(defstruct-leng-fields
type (car bedy) (cadr bedy) 2)
(defstruct-replace-fields
(cencat (car bedy) ‘- type)
(cadr bedy)

Figure 3.3 The defstruct-lemg Definition Without Backquote
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called an organelle which is covered in Chapter Vv!. (Siskind, 1982, pp. 14-
15)(Lincoln Lab Report 662, 1983, pp. 25-26)
TABLE 3.2

NUMERICAL COMPARISON PREDICATES
Predicate Name  Predicate Test

=g - equality with zero
<8 negative sign

>0 positive sign

=0 non-negative value
<=0 non-positive value
<= less than or equsl
)= grester than or equal
©0 not equai to zero

© not equal

=1 equality with one

In addition to the numerical comparison macros shown above,

lincoln.] has several macros that perform type checking.
b. Type Predicate Macros

LISP's applicative nature allows functions to be passed as data and
provides data handling flexibility at the expense of performing very little
type checking® (Gray, P., 1984, p. 111) Whereas in LISP predicates usually
have the form <name>p, in linconl.l they have the form <name>?. Take for
example a LISP and a lincon.] predicate that checks if a number is odd:

-> (eddp 3)CR>
;» LISP predicates oftenend ina " p ".
t

" 8 For a discussion of type checking see (Aho, 1986, pp. 343-380).
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B. FUNCTIONS
1. APL Like Qperators

APL was one of the first programming languages to apply functions
over whole data structures, thereby freeing the programmer from the
tedium of iterating over elements.® John Backus, one of FORTRAN's creators,
wanted to reason algebraically about programs and suggested applying APL's
ideas in a purely functional manner. The operations of this algebra would
consist of applying, binding, selecting, "composing, reversing, mapping and
reducing functions.” (MacLennan, 1983, p. 405) |

Several functions are shown here as examples of the many useful
functions with an APL flavor in this section:

-> (such-that '( @ -1 9 -2 -3) <@)CR>

;; (such-that <listy <predicate>)

;; Return all list elements satisfying the predicate.
-1 -2 -3)

-> (slash ‘((a b c)(d ¢ a b)(e { g b)) nil ‘union)CR>

;; (slash clisty <identity> <function)

;; Return the result of applying a function to a 1ist's elements.
(abcdefgh)

-> (sort'(1 425 3 9) »)CR>

;; {sort <list> <predicate>)

;; Sort a list's elements by a predicate.
954321)

-> (car-list ‘((1 2)(3 4)(S 6)))<CR>

;; (car-list <listy)

;; Find the first element of each of a list's sublists.
(135)

9 For an excellent APL user's guide see (I1BM, 1983, p. 13).
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-> (nthset-list
‘(1 46)
'‘(Sad is the woman who cries along the way.)
‘(Happy mawm sings) )«CR>
;; (nthset-list <index-list> <template-list> <new-element-list>)
;; Replace the indexed positions in the template-list with the
;; ragpective elements from the new-element-list.
(Fappy is the mam whe s/ags along the way.)

3. Set Functions
A LISP list can be viewed as 8 set with elements, e.g.:

{ element 1, element2, ..., elementN } :== (<element>*)
¢saty = <listy

with this point of view in mind lincoln.! provides a variety of set

operg_.tors:

-> (setify ‘((a b)(a b c) (@ #/(a) 2 'a (8/))CR>

;; (setify <listy)

:; Remove redundant elements from a list. Notice that (a b) and
;; (@) occur more than once in the list. Italics are for emphasis.
((a b c)(ab) 2 a (a))

=> (umion ‘(1 23 4) (235 46 )R
;; (unfon <set><set>y)

(1234567)

-> (intersection '(1 23 45) '(3 45 6))<CR>
;; (intersection <set> <set>;)

(345)

-> (set- ‘(1 23 4 5) ‘(2 9)KCR>

;; (set- <set>y <setyy)

;; Remove set, elements from set,.
(139
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The wide spectrum of functions seen in this section crop up

throughout MacPitts and LBS. Surprisingly enough though, a large portion of

R the functions encountered in these programs are generated by one macro:
L defstruct

C. DEFSTRUCTS!2
The lincoin.) defstruct [define structure macro] allows the user to

P R R

create new data types. it automatically generates macros to create, select,
change or type check instances of the data type. The following quote states
the idea of a structure (Winston, 1984, p. 100):

Conceptuaily, a structure is 8 collection of //e/ds end /7e/d va/ues .
We .are allowed to define new structures by specifying their particular
field names and default field values. We are further allowed to construct
individual structures of any already defined type, to access those
individual structures, and to revise them. However, in keeping with the
spirit of deta abstraction, we are not allowed to look st the way individual
structuresare represented internally, for we are supposed to be isolated
from the actual representation.

U 4 & & & N &

Befstructs are frequently used throughout LBS and MacPitts. They are 2
useful tool when a large number of different data types must be
\ manipulated. The defstruct macro creates short or long data structures.

' 1. Short Defstructs
The short defstruct has the following format:

¢short form> = {<field>* | { <field>*<list> })
<field> ::= <symbol>

L e e e v

12 Refer to the examples in Section 111.A.2. Lincoln.l's defstruct macro
is slightly different from those found in other versions of LISP.
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Notice that the result is a 1ist with all the field values placed in
the order they were entered. ‘
b. Short Selector

Befstruct also creates selector macros to obtain field values. A
short selector macro that picks out <field>; of a <type> short defstruct hes

the format:
<short-selector> := <type>-<field>
<field-valuey; :=
-> (ctype>-<fieldy; {*(<field-value>*) |
(list ['Kcfield-value>*}} J<CR>
For example:

-> (peint-name ‘(in 3 ? NM ((signal)(river))))CR>
:; Get the point’'s name: '
in

-> (peint-attributes '(wss -2 7 ND ((po-er)(outll))<CR>
;; Get the point's attributes:
((pewer)(aut))

c. Short Mutator
The third macro automatically generated for a short defstruct is
used to change field values. Mutators replace a <type> defstruct's <field-
valuey; with <fiald- new'«value; and have the follewing form:

<short-mutator := replace-<type>-<field;
(«field-valuey,..<Tield- new-value; ..<field-valuedy) :=
-> (replace-<type>-<fieid,
{ *(<tield-value>*) | (list [‘)<field-value>*) }
{ [')kfield- nem-aluey; })<CR>
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In both the short and long structure cases defstruct is used. A long

defstruct example with a tree genus and eight species:

-> (defstruct tree
null ()
rect (layer left botteom right top)
symbel-call (name)
meve (tree du dy)
rotcw (tree)
rotcew (tree)
mirrors (tree)
mirrery (tree))«CR>

This long structure creotes a tree data type. There are eight tree
cases: mull, rect, symbol-call, move, rotcw, rotccw, mirrora and
mirrory'S. Note that five of the tree cases have a tree in their field. The
field"ﬁrguments are aiso defstructs! A long structure has four associated
functions: constructors, selectors, mutators and interrogators.

a. Long Constructor
As in the short structure, macros to construct data type instances

sre automatically generated in the long structure. A constructor that
instantiates the species <case;>-<type> has this format:

<long-constructor> := make-<case;-<type>
(<casey; <«casey;-field-value>*) :=

-> (make-<case>;-<type> { [')<ccaser;-fiald-value>}*)<CR>

15These eight cases correspond to eight basic operations on rectangles.
Null is no action or no rectangle. Rect is a rectangle with the given layer
and dimensions. Symbel~call represents a method for generating
hierarchical representation. Mewe, retcw, rotccw, mirrors and
mirrery represent respectively a displacement by dx and dy; ninety degree
clockwise and counterclockwise rotation; and a flip about the x axis or the y
a:)ds. The operators these trees represent are described in (Crouch, 1984, p.
8).
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<long-mutator> := replace-<cases-<type>-<field;
(<casey;

««ccasey=<field>, -values ...

«casex~<field>;- nan~vaiue> ...

«casex-<field>y-values ) :=

-> (replace-<case-<type>-<fieldy;
- {*{<casey; <<case~-figld-value>*) |

; (list { [')ccasey; H ["lcccaser;-field-value> }* ) }
; {I"l<ccase=<fields;- nar-values} JCR>

This is best seen in a few exampies:

-> (replace-rect-tree-top ‘(rect NM 1 2 3 4) 15)«CR>
;;replace @ “rect-tree” species’ "top” field with 15,
(rect NM 1 2 3 15)

- o W

-> (replace-move-tree-dy
' § ‘(mewe (rect 123 4)98)
5 11)CR>
§ . ;; replace a “move-tree” species’ "dy” field with 11.
(meve (rect 123 4) 9 11)
The tree example has shown that a long structure adds a level of
complexity to the defstruct concept. why bother? Because there is a big
‘ advantage to be gained in grouping similar ideas together and then
: differentiating between them. in order to do this a long defstruct aiso
creates interrogators.
d. Long interrogator
; Long structures offer a limited form of data type checking with
their interrogator macros. A check to see if 8 structure is a <casey-<type>

species can be made as follows:
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The olher check thal is made ensures thal oniy the iast fieid in a
defstruct is a iist. This uccurs in defstrucl-short-fieids and
defstruclt-long-fieids where the fields are also checked to be not emuty.

4. Summary

defstruct offers the programmer a tool for data abstraction. This
idea along with the mnemonic character of constructors, seiectors,
mutators and interrogators are great aids in data manipuiation. defstrucis
are extensively used in LBS and MacPitts. It might also be speculated that to
some degree the mind-body paradigm is reflected in MacPitis’ funciion-daia
language and controller--data-path architecture in any case, Tabie I.4

presents a defstruct summary:

TABLE 3.4
DEFSTRUCT FUNCTION SUMMARY
Function Short Structure Long Structure
Constructcr  make-<type> make-<casey;-<types
Selector <type>-<fields; {caser-<typey-<field>,
Mutator replace-<typer-<field>; replace-<ccases;-typer-«igias,
interrogator  MNone is-<type>-icase:,?
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TABLE 4.1
GLOBAL VARIABLES AND THEIR FUNCTIONS

- W 4 > &
o™ i i ¥ T

4 Yarigble Statys Check Status Modifier & Options
3 --L5-symbel-  (L5-symbol- (L5-symbol-storage!
. storage storage) " ['l{<on-disk |

| in-memory>})

. --L5-technolegy (technelegy) (technology! ['/{<nmes
. | cmos | cmos-pw |
cmos3 | sos| scmos>})

R
&

. --L5-minimum- (minimum- (minimum-feature- °

: feature-size feature-size) size! <centi-p per A>)

‘5 --15-symbol-list (L5-symboi-list) & (add-symbol-to-L5-

| : (create-called-  symbel-list <symbol>)
symbol-item

3 <position>)

4 --L5-symbeol- --L5-symbei- (setq --L5-symbol-

L number number number <integer) &

(symbol-number)
--L5-symbol-port (L5-symbel-port) (setq --L5-symbol-
port <port>)
--LS5-symboel-file (L5-symbel-file) (setq --1L5-symbol-

file <file>)
»* (allowed-lagers) .
P (allowed-conducting- s
lagers)
» (lager-tabie) .s
2% (allowed-technologies) s

All of the global variables can be changed using setq. Functions with,
*# operate by checking the technology global variable and returning an
appropriate response without setting any variables. The, #*, denotes that to

change the values returned by these functions the LISP source code has to be
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-> (L5-symbol-file)CR>
;; This file is used to output CIF3 results.
/tmp/LSsym12904

-> (LS-symbol-pert)«CR>
;; Aport is a LISP 1/0 device.
%/tmp/L5sym12904

-> (technolegy! ‘cmos)<CR>

;; 5et the technology to cmos and list out its layers.

;;These symbols correspond to CIF layers, e.g. CD = n-type

;;diffusion, CP = polysilicon, CM = first layer meta!, etc..
(CB CP CM CM2 CS CC C6 CID NX HP)

-> (technelegy)<CR>
;; The current technology is complementary metal oxide
;; semiconductor

cmos

-» (technology! 'scmos)<«CR>
;;These are Caima scalable cmos CIF layers, e.g. CMS =
;;metal2, CMF = metall, CPG = polysilicon, etc..
(CMS CMF CPG CAA CUA CCP CCA CIVP CIDN
CS? CSN Caé6)

-> (minimum-feature-size! 50)CR>
;; Set 50 centimicrons to be 1 1ambds unit.
50

-> (minimum-feature-size)«CR>
;, Currently 50 centimicrons are | Jambda umt.
50

2 "The Caltech Intermediate Form (CIF Version 2.0) is a means of

describing graphic items (mask features) of interest to LS! circuit and
system designers.” (Mead, 1980, p. 115) Alsc see (Sequin, 1980, Chapter 7}
and (Scott, 1986, Magic Tutorial #9 and Magic Technology Manual #1-2).
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2. L5 Dota Stryctures
All LS data structures are created using defstruct. The generic
object in LS is called an item and is composed of rectangles and labels.
(Crouch, 1983, p. 2) Since an item is a grouping of smaller objects it is
surrounded with an imaginary rectangle [box] which encompasses all its
elements. The smallest box which encloses an item is called the Minimum
Bounding Box [MBB). (Ayres, 1983, p. 64) The syntax for an item is:

Category

item) =

{<c1eftyi<bottom>|
<rightsictopy} =
<pointsy ::=
<pointy ::=
<attributesy ::=
<called-symbol-

names» ::=
<treey =

<null-tree> :
rect-treey ;=
<symbol-call-
tree> ;=
<move-tree) :=
<rotcw-trees =
<rotccw-treey ::=
mirrorx-treey ;=
<mirrory-treey ::=

TABLE 4.3
AN ITEM'S SYNTAX

Syntax

(<efty<bottomy<right><top><points>
<called-symbol-names><tree>)

<number>

(<point>*)
(<name><x><y><attributesy)

{ (<symbol>*) | ({(<symbol>)}*) }

(«<number>*)

{ <null-tree> | crect-tree> | <symbol-call-tree> |
<move-tree> | <rotcw-tree> | <rotccw-trees |
<mirrorx-tree> | <mirrory-tree> }

(mull)

(rect clayencieftr<bottomy<right><tops)

(symbel-call <number*)
(meve <ireey)

(retcw <tree>)

(retcew <treey)
(mirrern treey)
(mirrery <tree>)

An item structure contains two other structures within it: a list

of peimt short structures and a tree long structure. First, a look at the

item structure and the creation of a simple item:
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As is seen in the above axample, a list of points is a field in an item.
The peint short structure is implemented as follows:

-> (defstruct peint (name x y layer attributes))

;; A point is a label. Points have names, are located at

;; a specific x and y location and are attached to a layer.

;; A point's attributes can give descriptive information

;; Lo guide functional application. For example: points

;; with the attribute "external” are actually plotted when

;; CIF is created; the power attribute is used by the

;; function power-line-positions [in the MacPitts program

;, organelles.l] to find Vdd or Vss locations . These

;; positions are then used by layout-metal-lines [in

;; organelles.1] to 1ay down & metal line grid.
replace-peint-attributes

fm example now shows the creation of s peoint:
-> (make-peint ‘(in) 1 2 'CM
‘((pewer)(enternal)))
:: Make a point whose name is "in", located on CMOS metal

;; at {1 2}, and with "power” and "external” attributes.
((in) 1 2 CM ((power)(enternal}))

An item's fifth field is a summary of other items used to construct
the item. This <called-symbol-names> field is composed of a list of
numbers. These numbers represent symbels. A symbel is a structure
containing an item’'s salient information. Computer time and memory use are
reduced when frequently used items are constructed once and then referred
to whenvever needed. Whenever an item is made using the defsymbael
function [See Section IV.C.1], a pseudc-item, a symbel, is placed in the L3-
symbel-list. Any use of this item will be reflected in the <called-symbol-
names> field; these numbers indicate a symbel's position in the L3-
symbol-list. A symbael has the following structure:
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B. ITEMS AND THEIR OPERATIONS
The item data structure is the basic building block in LS. However,

having to use the make-item function can be a bit tedious. Therefore, LS
has primitive functions for creating rectangles [or boxes] and marks [a
peiat that has an item format). LS also has operators for moving, rotating,
etc., items and their peints. 1tems and marks can be grouped together to
form larger units using the merge function.

T em Cregtion T

LS has four functions for creating primitive items: null-item, rect,
bex and mark:

TABLE 4.4 )
FOUR PRIMITIVE ITEM CREATING FUNCTIONS
Function Arguments
null-item none
rect <18Yer ¢Xemin® <Yrmin® <Xmax> YUmax’>
bon <lager<length><width><X.enter > <Ucenter>
mark namex<x><yr<layer<attributes>

Some examples of these primitive functions are:

-> (null-item)<«CR>

;; A null item is useful as a default value for a conditional since

;; it has an item's format with only nu!l fields [Crouch, 1983, p.S)
(nil nil nil nil nil ail (nuall))

-> (rect 'CB O 1 4 8)«CR>
;;» A rectangle has no points or symbol calls. it consists of its
;; MBB coordinates (0 1) and (4 8) and a rect-tree.

(0148 nilnil (rectcooi 48))

7 Note the difference between the <LISP form>, (rect 'CB 8 1 4 8}, and
the <expression>, (rect CBD 0 1 4 8). The first is a function, the second is a
data object. The first evaluates its arguments, the second is a list of
psrameters. Refer to Section I1.C.1.
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TABLE 4.5

‘ TRANSLATION AND MERGING OPERATORS
Eunction Arguments Rescription

A brief 1ook at the application of some these functions follows:

-> (meve
‘(08 10 10 nil nil (rect NM 8 8 10 10)) 3 S)«CR>
;; Move the metal rectangle to the right 3 units and up S units.
;; Notice how only the MBB is changed [addition and consing
;; elements into & 1ist are fast]. 1.e. The result of the operation
;; could have been: (35 13 15 nil nil (rect NM 3 5 13 15)), but
;; if the tree was composed of many elements then each one
;; would need to be moved alsol
(35 1315 nil nil (meve (rect NM 8 8 10 18) 3 5)

TS R
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meve <item><dx><dy>  move an item.by dx and dy units
heme <item> place item's top left at (0 0)
first- <item place item's bottom left at (0 0)
quadrant
second- <item> place item's right bottom at (0 0)
" quadrant
e e Uil — ———<itOM> -~ - —_place ilem's right top 8t (0 0). . .
quadrant
feurth- <item> same as home
quadraat
merge <itemy* make one item out of several items
merge-list  (<item>*) make one {tem out of a 11st of items
align <item> move an item so that the named point
<point-name> is placed on the given coordinate
<coordinate>
elign-items <item, <item>, is moved so that its named
<point-name>, point aligns with <item>y’s point
<itemd,
<point-name>,
retew <item> rotate 90° clockwise about (0 0)
retecew: Kitem) rotate 90° counter-clockwise . ..
mirrers item> mirror about the x axis
mirrery <item> mirror about the y axis
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TABLE 4.7 (CONTINUED)
POINT OPERATORS

Eunction =~ Arguments Description

contaln <item> prepend the given name to every
<name> point's name in the item

The following exemples show how point operators work. The
layeat-inverter introduced in Section IVB.2B is agein used here. This
time the +5 Volt power point is extracted from the item:

-> (find (layout-iaverter 4 t) 'vdd)«CR)
;; Find the first point neamed “vdd" in & layout-inverter. Refer to
;; the previous example for (leyout-inverter 4 t).

((vdd) 8 -2 NM (pewer))

A more complex item, lamt-ild, is shown below [Figure 4.4]:

-> (lagout-and 4 4 t)CR>
;; Another MecPitts orgenelle. This one “ands” two fnputs. Note
;» that the organeile calls <symbol>s; 4 ¢ g 9 &10. It 1tself is
;; <8ymbol>y. The 1ist (1 46 8 9 10) shows the symbols.
(0-43250

(((gnd) 18 -18 NM (pewer))

((wvdd) 8 -2 NM (pewer))

((gnd) 21 -41 NM (pawer))

((in1) 14 -43 NP (in))

((in2) 19 -43 NP (im))

((vdd) 8 -25 NM (pewer)) )

(14689 10)

(symbei-call 18) )

Since this item has more than one +5 Volt power point, they can
be extracted using the following procedure:

-> (find-all (lagout-and 4 4 t) ‘vdd)CR>
;; Find 811 points nemed “vdd" in a layout-end item.
(((vdd) 8 -2 NM (pewer))((vdd) 8 -25 NM (pewer)))




W W

-> {let
((test-item
834
(((in) 2 3 NB (enternsl top))
((vdd) 1 1 NM (pewer loft river))
((eut) 3 3 NP (external signal tep)) )
(123)
(symbei-call 3) ) ) )
(find-attributes test-itom ‘(enternal top)) )«CR>
;; Find all points with “external” and “top” as a subset of their
;; attributes.’2 This method uses attributes to find points.
(((im) 2 3 NB (enternal tep))
((eut) 3 3 NP (external signail tep)) )

After a point has been used it is sometimes desirable to remove it
from the item. There are several functions thet accomplish this. Here are
two examples of how to remove one point. The first metﬁod. requires that
the entire point be specified as follows:

- (uameark
(lagout-inverter 4 t)
‘((gnd) 18 -18 NM (pawer)) )CR>
;; Remove the point from the item.
(0-2820 0
(((vdd) 8 -2 NM (pewer))
((im1) 14-28 NP (in)))
(1467
(symbel-call 7))

The second way to delete a point is to use its name:

12 The attributes could be a list of lists instead of a list. in that case
when find-attributes is applied the attributes parameter has to be a list
of lists. |f the points are of the form:

((<name>) <x><y><layen( {(<attribute>*)} ))

Then to use find-attributes:

(find-attributes <item> ‘((<attribute>,)...(<attributex )))
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-> (let
((test-item
‘0034
(((im) 2 3 NM ((enternal)(tep)))
((vdd) 1 1 NM ((pewer)(left)(river)))
((eut) 3 3 NP ((enternal)(signai)(tep))) )
(123)
(symbei-call 3))))
(unmark-sttributes-list test-item ‘((left)(tep))))<CR>
;; Remove any points that have “1eft” or "top" as part of their
;; attributes. The river attribute refers to the river router.'4
(683 4 il (1 2 3)(symbel-call 3))

Once an item has been created, it may be desirable to give ail its
points a common name. By doing this, point functions that use a name as an
argument to search for points will find all points with the common name.

-> (contain (layout-and 4 4 t) ‘and-1)«CR>
;; Prepend the name “and-1" to every point's name.
(8-4325¢

(((and-1 gnd) 18 -18 NM (pawer))
((and-1 wdd) 8 -2 NM (peswer))
((amd-1 gnd) 21 -41 NM (pewer))
((and-1 in1) 14 -43 NP (imn))
((and-1 in2) 19 -43 NP (in))
((and-1 vdd) 8 -25 NM (pewer)) )
(1468918)
(symbei-call 10) )

Labels [peints or marks) are useful as references to direct other
functions. Notice how the next function, lageut-flags!S, gives each of its
points & " river " attribute. These labeled points can then be used by the
rimer function to connect them to other items.

14 See Section 1vV.B.2.d.

15 This function is found in the MacPitts program flags.l.
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1. Defsymbols

in order to save memory and time, LS has a define symbel
(defsymbel] macro which treats items in a fashion similar to a subroutins.
The defsymbel macro has the following syntax:

<defsymbol-name> ::=
-> (defsymbel <defsymbol-name>(<arguments>)<LS form>)<CR>

<LS form> := { <lincoln form> | <LISP form> | <LS form> }*
when an item that has been defined as 8 defsymbael is called with a
set of arguments it is saved as 3 symbasl on the L5-symbel-list. Then, if
it is called again by another function with the same parameters, the LS~
symbel-list is searched for the symbel representing the item. The
position of the symbel in the L5-symbel-list is retumed and placed in
the called-symbel-names field of the item.

If the defsymbel has not been called with the given set‘ of
parameters, then a symbel corresponding to the defsymbel will be placed
on the LS-symbel-list.

There are other effects of using o defsymbel that depend on whether
the L5-sgmbel-list's value is in-memery or en-disk. |f it's set to im-
memery then the item’'s tree is saved as part of the symbel that is
placed on the L5-symbel-list. On the other hand, if it's set to en-disk,
then the item's tree is not Stored as part of the symbel: the tree is
converted to CIF and output to the L3-symbel-file. These two
possibilities and their effects are summarized in Figure 4.7
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The storage location has been set to in-memery. A 1ook at how a

defsymbel works is now taken:

-> (defsymbael butting-contact ()
(merge
(rect 'NM 0.-6 4 0)
(rect 'ND 0-44 0)
(rect ‘NP 0 -6 4 -3)
(rect 'NC 1 -5 3 -1) ) iCR>
;; A butting-contact is one of LS's defsymbols.
butting-contact

-> (butting-contact)«CR>
;; Create 8 butting-contact item. Notice it calls <symbol>, in the
;; LS-symbol-list [itself).

(8 -6 4 8 nil (1)(symbel-cail 1))

what happened to all the layout information in the butting-
contact? It has been placed on the L5-symbel-list.

-> (LS-symbel-list)«CR>
;; The LS-symbol-list only contains a symbol for butting-contact.
;; symbel-1D := (butting-contact 4)
;; symbol-nest-level := 1
;; symbol-tree := ((rect NM 0 -6 4 0)..(rect NC 1 -5 3 -1))
(((butting-contact 4) 8 -6 4 0 nil wil 1
((rectNM B8 -6 4 9)
(rect NB 8 -4 -4 0)
(rect NP 0 -6 4 -3)
(rect NC 1 -5 3 -1))))

A defsymbel can be retrieved as a function from the LS-
sgmbel-list using the L5-item-te-pregram function using this syntax:

(def <function-neme> (leambda ail LS form>*}) ::=
= (L5-item-te-pregram <item form><function-name>)<CR>

<item form> := { <item> | <defsymbol-name> }
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-> (defsymbsl laysut-inverter (ratio! mark?)
(let
((diffusion
(merge
(meve (diff-cut) 16 -16)
(mark ‘gnd 18 -18 'NM ‘(pewer))
(cond
((= ratiel 4)(rect'NB 7 -18 16 -16))
(t (rect °NB 7 -28 16 =16)))))
(gete (rect 'NP 13 -20 15 -14))
(mark

T (cond -
(mark? (mark ‘in1 14 -28 ‘NP ‘(in)))
(t (nuil-item)))))
(merge diffusion gate mark (lagout- pullunl)ll<CR>
;; The desymbol macro returns a name.
layout-inverter

If many large items are placed on the L3-symbel-list and all
their trees are also placed there, the list quickly becomes unwieldy. An
alternative is to keep all the other information in the L3-symbel-list,
convert the item's tree to CIF and place the CIF in the L3-symbel-file.

b. em-disk Storage

This storage mode reduces the L5-symbel-lists size by changing
the item’'s tree to CIF. It is useful when items don't need to be retrieved
from the L5-symbel-list with their trees [for example, the L5-item-te-
pregram function will only create a program out of a symbol if its tree is
on the LS-symbel-list; similary, the Caesar conversion routines {Section
IV.C.3} also require in-memery storage).

An example can be examined after resetting all the global
variables using the start function. First the ls-sgnnl-stougb is set
to em-disk and the effect compared with the results of Section IV.C.1.a.
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2. CIF
When the on-disk storage mode is used, an item's tree is sent to the
L5-symbel-file as CIF. A brief look is now taken at the CIF result from

the previous example:

-> (LS-symbel-flile)«CR>
/tmp/L3sym20374

-> (enec cat /tmp/LSsym20374)<CR>
— _;;-exec allows UNIX® functions to be performed from LISP. In this
;; case the contents of the LS-symbol-file are concatenated to
;; the terminal. The following is CIF output. CIF uses " (" and ") "
;; for comments.
BsS 1;
(define <CIF symbol> named 1);
(name: butting-contact);
(CIF comments are not printed out);
LNM; BL 1808 I 15808 C 500, -758;
(since this was output with 250 centimicrons = lambda);
(a1l the units must be divided by this amount);
- (CIF defines its rectangies like LS does its boxes:);
( <layer><length><width><X enter><Ycenter>;
((box 'NM 462 -3));
LNB; BL 1008 D 1088 C 500, -500;
((box'ND442-2));
LNP; BLIOOG D 758 C 508, -1125;
((box ' NM 432 -3));
LNC; BL 500 1008 C 508, -750;
((box'NM242-3));
BF;
(end <CIF symbol>,‘s definition);

The function that LS uses to create CIF has the following format:
<filer.cif == -> (cifeut {[')kitem>H["Kkfile>}{"<titie>"})<CR>
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Figure 4.8 Caesar, LS and CIF Conversions
There are several functions associated with the Caesar editor. Table
4.8 gives a synopsis (Crouch, 1983, pp. 17-18):
TABLE 48
CAESAR FUNCTIONS
caesar <itemx<file> Converts an <item> into Cagsar format, the

Caesar editor is invoked and the results of
the session are saved in the <file> as items.

display <item> Displays the <item> in Caesar without
generating any LS code afterwards.

casut <Citemy<file> Outputs the <item> in Caesar format to
file>.ca

cain <file> Reads in a Caesar formatted file and
converts it to LS code.

ceasape <(caesar file> Converts a <caesar file» into LS code and
<LS filey saves the result in <LS file>. Each Caesar
symbol is made into an LS defsymbel.

19 This is & Berkeley CAD conversion program from CIF to Caesar format.
A minor problem with this present scheme is that Caesar evolved into the
more versatile Magic system. The routines need to be modified to use Magic
format instead of Caesar format.

20 All of these functions are fexprs, therefore, none of the arguments are
quoted.
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V. IQP L AND PREPASS L. THE TOP-LEVEL

The reader has seen how @ group of LISP object files can be loaded
together to create a LISP environment!. This chapter shows how a top-level
function is used to make an environment accessible with parameters. In
other words, the environment will be invoked just like other UNIX®
commands. Two programs that contain top-level functions are top.! [LBS] and
prepass.l [MacPittsl. in addition, these programs contain the “compilers” for
LBS and MacPitts. A 100k at these top-level programs brings to 1ight mejor
differences and similarities between LBS and MacPitts.

A. THE TOP-LEVEL
1. Eranz Lisp's Default Top-Level

A top-level function creates the prompt-read-eval-print loop.The
user can call the top-level function and can create a prompt-read-evai-print
loop with different characteristics. To do this, the user defines a new top-
level function and types (reset) to run it. (Foderado, 1983, p.13-
1)(Wilensky, 1984, p.138)

When the imperative command lisp is given to UNIX®, the interpreter
is brought into action with its default top-level: franz-top-lewel2. This
occurs because the variable tep-lewel is bound to franz-tep-level.

1 Sge the discussion in Chapter 1| Section B.2.b.
2 Defined in /usr/1ib/1isp/toplevel.l
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The top-level file, top.l, is composed of several LISP functions. The
first, chip-tep-level, performs a check of the arguments used when
invoking “chip®. If there are no arguments then the “chip™ dumplisp
environment is called up. If there are arguments, then these are passed on to
the chip-cempiler function. The user should note that chip-tep-tewvel
was set to be the top-level function in the example’'s makefile above.

In other words, the "chip” dumplisp environment has 6 function, chip-
tep-lewel, which handles the arguments placed in the command line when
“chip” is invoked. Notice that if no arguments are given, then a message is
printed out and the user is placed into the “ chip " dumplisp environment.
This fgature can be used for debugging purposes [See Footnote 3 of this
chapter]. A look at this function follows: '

(defun chip-tep-level ()
;11 "chip” is invoked without any arguments:
(cond ((=1 (argw))
;; (argv) gives the number of elements on the command
;; 1ine that invoked this LISP. So, if the user types:
0 & chip <argument,><argument,><argumentz>
;; then (argv) := 4
(patem
“usage: chip <filename> [<options>]")
;; (patom <expression>(<port: default to screem])
,; print out the expression:
;; _usage: chip <filenome> [<options>]

;;The " [ " and " ] " indicate an optional argument.

(terpr)

;; (terpr) or (terpri) terminates printing.

(setq user-tep-level ()

;; The variable user-top-level is set to nil, but
;; notice that in the makefile it was set-to chip
., top-level. Therefore, if chip is called up

;; without arguments, then chip-top-level calls
;; up the * chip * dumplisp environment
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-> (count S)
(12345)

(enit) )
The next function is set up in the makefile to handle interrupts. when
an iterrupt is received it prints out “chip-interrupt:”, the signal number

and then exits the “chip” dumplisp environment. Here is the code:

(defum chip-interrupt-handier (signal-number)
;; This is used in the makefile as the function that
;; handles interrupts (2), floating exceptions (8),
;; alarms {14) and hang-ups (1). (Wilensky, 1984, p. 270)
(patem ° chip-interrupt: °)
(patem signal-number)
(terpr)
(enit)) )

The previous functions allowed the user to invoke the “chip” dumplisp
environment as a UNIX® command. The following function is used within the
"chip” dumplisp environment to pass arguments to the chip-cempiler

function:

(def chip
;; The nlambda function format takes many arguments,
;; they are unevaluated and bound as 8 list to the
;; function’s single parameter. For example:
;. => (chip adder cif obj)
;; then args := (chip adder cif obj)
(nlambda (args)

;; (chip <filename> [<option>*])

;; <option> ::= {nostat | noobj | nocif | mag}

;; <default option> ::= stat obj cif

(chip-compiler args) ) )

The next function coordinates other programs in order to produce the
different types of output. it first uses the precess-eptien function to set
the giobal variable, eptisa-list, to the options that have been input. Then
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other hand, there may be other options, besides the default velues, which

the user can input. The following function examines the options the user has

input and updates the option-list as required:

(defun precess-eption (option)
(cond
((net (atem? optien))
(warning “Optien net atom*°))
;; Options must be atoms..
((and (> (length (explede aption)) 2)
(equal 'n (car (exnplede eption)))
(equal ‘o (cadr (enplode opticn))) )
;; 1s the option more than two letters long and its
;; first two letters an “n" and "o [the option is of the
;; form: noXXX])? Explode separates an atom into the
;; characters that compose it {(implode is its dual).
(cond
;; 1S tha rest of the option [i.e. excluding the " no |
;; in the option list?
((member?
(implode (cddr (enplode option)))
optien-list )
;, Drop the option from the option-list.
(setq option-list
;; Remove the indexed element from the
;; option-list.
(nthdrep
;; Find the index of the option without the
;; 7 no " in the option-list.
(ieta
(implede (cddr (enplede eption)))
eption-list )
eptien-list ) ) ) )
;; Otherwise, if the option is not of the form noXXX,
;» then add it to the option list.
(t (cond ((net {member? option option-list))
(setq
optien-list
(cons eption optien-list) ) ) ))))
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expressions. This "obj” format is then used by layeut-cmes-wein [called
by layeut-chip] or layeut-inside [used in the Caesar section] to create
the array. These ideas can be seen in the implementation of LBS's compiler.
The Ibs-cempiler function assumes that an. lhs-tep-level, Ibs-
interrupt-handier and Ibs function are evailable [See Section V.A]. LBS's
compiler has the following format:

(defun Ibs-compiler (args)
(cond
;, If the arguments aren’'t empty, then process them.
((net (null args))
(mepcar ‘process-option (cdr args) )
(preg
;; Define local variables. .
(in-file stat-file caes-file ebj-file sut-file
inport statpart casspert abjpert bs chip )
(setq in-file (concat (car args) ‘.Ibs))
(setq stat-file (concat (car args) '.stat))
(setq caes-file (cancat (car args) ‘.ca))
(setq obj-file (concat (car args) ‘.obj))
(setq sut-file (car args))
;; Check that the input file is not empty and then pro-
;; proceed to process the input file.
(cond
;, Probe the input file to see if it has anything in it.
;; 11 1t's not empty then turn it into the in port.
((prebef in-file)
(setq inpert (infile in-file))
(setq statport (filespen stat-file 'w))
;; The boolean input format is converted to a
;; format showing connectivity and logical
;; relationships.
(setq
bs |
(basi-te-straps (read inpert) statpert) )
;; Check the options and produce the ones desired.
(cond
., Produce the intermediate "obj" format.
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LBS has & simple architecture based on implementing combinational logic
circuits in CMOS. MacPitts is a larger program with many more possibilities.

C. MACPITTSS COMPILER

The increase in complexity from LBS to MacPitts can easily be seen in the
syntax used by the latter program. A glance through MacPitt's BNF shows
that it incorporates concepts such as: functiom, macre, port [n-bit dataj,
signal [t or f data], register [datapath storage], flag [signal storagel,
orgaaelle [functional unit], test [e.g., = or =@), etc.. MacPitts, unlike LBS,
requires that |/0 pads be specifically declared [that's why <pin-number>s
are used to specify their location). Again it should be noted that most of
these ideas are implemented as defstructs$ Skim through the BNF to gain
a feeling for MacPitts’ syntax:

TABLE 5.2
MACPITTS SYNTAX

Category syntax
<MacPitts (program <program-name><word-size»

programy ::= {<eval> | <def> | <always> | <process>}*)
cevaly zz (eval {compile | simulate | both} <LiSP form>)
<def» := (def <pin-number>

{ pewer | greund | phia | phib | phic})

<def> := (def register-name> register)

S Only & brief description is given here of MacPitts. The reader should
consult Southsrd [RVLI-3], 1983, pp. 1-33 and Siskind, 1981, pp. 1-18.

é This will be covered in more detail in Chapter V1.
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ormy =

{macro> :=

<organelley :=

<function) :=

ctesty o=

<condition ::=

TABLE 5.2 (CONTINUED)
MACPITTS SYNTAX

syntax

<integenr | "<characten” | <constant-neme> |
<register-name> | <port-name> |
(ge <form>) |
(call <form>) |
(veturn) |
(par <form>*) |
(if <form><formy<forms) |
(cond {(<condition><form>*)}*) |
(setq <register-namex<forms) |
(setq <port-name><formy) |
(setq <signal-name><condition>) |
(<function-name><formula*) |
<macro>

(macre <macro-name>{single | list}
<LISP form>*)

(srganslle <organelle-name>
<*control-lines><*parameters><*test-lines>
<result?><GEN form><SiM forms)

(fumctiem <function-name> <organelle-name>
({integer | beolean}*)
(<control-line>*)(<parameter>*J<INT form>*)

(test <test~namercorganelie-name>
({integer | beslean}*){control-line>*)
(<parametem*)<test-1ine><INT form>)

t| () | <signal-name> | (amd <condition>*) |
(er <condition>*) | (met <conditions) |
(mer ccondition>*) | (mamd <condition>*) |
(mer <condition>*) | (equ <condition>*) |
(bit bit*>{cintegeri<integer form»}) |
(setq <signal-names<condition>) |
(<test-namex<farms*) |
<macro>
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TABLE 5.3

PREPASS.L FUNCTION SYNTAX
Eunction  Syntax
precess-<y> - -
Y = { <2> | definitions | definition | contrel-line |

parameter | test-line }

2> = <z2>-definition
22> := { pewer | ground | phia | phib | phic |

register | flag | signal | pert | macre | constant |
erganelle | function | test }

supand-<YY>
Y o= { proecess | macre | form-list | form |
‘component-list | component }

A quick look is now taken at-MacPitts’ compiler. it works in 8 fashion
similar to the LBS compiler. First, the input forms are converted to “obj"
format, and then this object code is transformed into the requested options.
Here is the compiler function: |

(defun macpitts-compiler (operands)
(preg (file-name file sbject obj item)
;; ptime gives run and garbage collection times.
(setq initisl-ptime (ptime))
;; The number of garbage collections that occurred.
(setq initial-gccount $gccounts)
;; 1T the operands are null or atoms then return to the
;; fran2-1isp top level.
(cond ((or (net (list? eperands))
(null sperands)
(not (atem? (car operands))))
(potem “usage: (macpitts <filename>
[<eptions>])")
(terpr)
(retura ())))
(setq file-name (car operands))
;; Set the option-1ist to the requested and uninhibited
;; default settings.
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(setq obj
(make-sbhject
(purge-library
(ebject-definitions shject) )
(ebject-flags object)
(ebject-data-path object)
(ebject-contrel sbject)
(ebject-pins sbject) ) )
(setq file
(eutfile (concat file-name ".0b}")) )
(pp-form obj file)
(clese file) ) )
;; Was CIF desired?
(cend
((member? ‘cif sption-list)
(setq item A
(catch (laysut-shject sbject) note) )
(cond ((null item)(retura ())) )
(heraid "Sutputing .cif file")
(cifout item file-name file-name) ) )
(statistic (concat "“Memeory used - *
(/ (memery) 1024) "K°))
(statistic (cencat
“Compliiation tosk °
(quetiesnt
(- (car (ptime))(car initial-ptime))
3600.8 ) ° CPU minutes® ) )
(statistic (concat
“Garbage collection took °
(quetient
(- (cadr (ptime))(cadr initial-ptime))
3600.0 ) * CPY minutes” ) )
(statistic (concat
“For a tetal of
(- $gccount$ initial-gccount)
* garbage cellections®) )
(return t) ) )

In summary, a bird's eye view of LBS’s and MacPitts' compilers shows the
relative differences between the two programs. MacPitts hes & more
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VI. QROANELLES

Chapter Y contains MacPitts’ syntax and its topilevel function. MacPitts’
BNF allows the user to define functions, macros, tests and organelles and
use them when writing 8 MacPitts program. Alternatively, the user can
modify the organelles.] and library programs and remake MacPitts. In this
fashion the new operators become part of MacPitts’ syntax.

A. OVERVIEW |

Before showing an example of the changes that are made in MacPitts to
change its syntax, the relationships among some of its programs and
functions need to be pointed out. When the user inputs a <MacPitts program>,
the compiler [1ocated in prepass.l] parses through the <MacPitts form»s. The
program uses its get-<x>, precess-<y> and expand-<yy>' functions to
process <definitionys; evaluate <evalys; expand <macroys; and, obtain
<source>s, <destination>s and <label>s. This is done by using list selectors
to disassemble the <MacPitts program> while checking the syntactic labels
that were used. For example, the words def, ground, process, macre,
functien, etc,, all trigger the use of the precess-defimnitiem function.
The ewal and process labels are treated separately. The functions used
during the parsing process to obtain <definition>s from the input are shown
below:

! Refer to Section V.C.
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Prepass.] is coordinates the conversion of the <MacPitts progrem> to a
layout with its get-ebject function. This operator uses subsidiary
programs [primarily extract.l] to produce an intermediate result, an " .obj ~
file, which can then instantiated into the silicon mask level by layout
functions [in flags.l, control.l and data-pathll. This object file is a
defstruct with the following definition:

(defstruct object
(definitions flags data-path centrel pins)l

A quick look is now taken at the names of the major functional
categories in prepass.] and its helper programs. Skimming through the
function names provides a " feeling " for MacPitts. The most common
operators are summarized by program in Table 6.1.

TABLE 6.1
MACPITTS PROGRAM FUNCT ION SUMMARY
Program  Eunction Name Format
prepass.l get-<x>, process-<y>, enpand-<z2>

extract.l extract-<A>
<A> = { compenent-list | precess | form | atom |
list | string | fixnum | register | flag | port |
signal | label | ge | call | return | etc. }

frame.l lageut-s>
<B> := { object | skeleton | wing | net | pins |
power-ring}

control.l  lagowt-<C>
<C> := { comtrel | driver | mpn | register |
weinberger-<« | etc. }
<D> := { gates | ner | ner-inport | ner-gnd-line |
etc. }

data-path.! lageut-<t>
<E> := { data-path | buses | unit | organelle | etc. }
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creations of these data structures4 The functions that are implemented in
the library are only constrained by the designer's imagination and & bit-
slice regime.

The library is used by the leekup-<> function to correlate a function
name found in a <MacPitts program> with an already created functional form.
This can be shown in a simple example. Assume that the library is:

-> (setq library '((Iilrarg)(canstanl't (nor))
(functiea 1+ ...)(test = ...)))CR>

Then the equality test, =, can be found as follows:

-> (leskup-test ‘= library)<CR>
;; Find the " = "test definition form in the library.
(test = _..) ’

In summary, MacPitts relies heavily on defstructs. A <MacPitts
program> is parsed and converted into s defstruct cailed an object. The
five portions of this object are then converted into LS by different
programs. A particuler set of layout functional units is included as a
defstruct which contains information relating the unit to MacPitts' syntax
in the library. A corresponding LS 1ayout of the unit is found in organeiles.l.
LS in turn is a language composed of defstructs and 1ayout operators.

With the general idea in mind of how MacPitts coordinates its various
parts to produce a chip, consideration is next given to modifying an
organelle and implementing it functionally.

4 |n Section VI1.B an example will be traced all the way from the layout to
the test definition.
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B. AN EXAMPLE

The organelle used in this example was designed by Lieutenant Anthony
Mullarky using Magic. The approach used was based on (Fox, 1983, p. 32).
Like Fox, 8 modification was made to the equality test organelle to reduce
its size and increase its speed. The organelle is implemented so that its
result pulls down the output bus to Vss when the test fails. Two different
cells are used: bity and a bity. The zero bit organelie is a one bit equality
checker tied to Vdd in order to precharge the output bus to +5 Volts. The Nth
bit organelle is a one bit equality tester without a pullup. The appellation -
== " is used to differentiate this equality test from MacPitts' " ="

The first items needed are an organelle-==-bit-@ and organelle-
bit-==-bit-n. The organelles were made using Magic and output as CIF. The
CIF was converter to Caesar format and then into LS format. The two
organelles are shown in Figures 6.4 and 6.5.

These two organelles are then incorporated into the standard MacPitts
library. Organelles.], the compiled portion of the library, is composed of a
default set of MacPitts functional units in LS format. Adders, decrementers,
equality testers, etc., are all located in organelles.]. The LS layouts are
usually defsymbols and have a name of the form: lageut-<X>-organelle.
The two basic zero and Nth bit items were made into defsymbols without
any arguments.

(defun lagout-==-grganelle (ratie bit)
;; Doesn’t use the ratio input.
(cond ((=0 bit)(organelie-==-bit-8))
(t (erganelie-==-bit-n))))
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Since " == " is a <test> operator, 8 test form is created to give the
organelle functionality. This form is placed in the library along with the
orgariene data structure. The code for <testy " == " is:

(test == == (integer integer) ()
;; <name> := ==, <organelle> := =z,
5 <types> := (integerinteger) ccontroi-lines> := nil
;; <parameters> := ((position 1){position 2))
;; <test-line> := (physical 1)
((pesition 1) (position 2)) (physical 1)
;; <interpret-form> follows:
(lambda (form word-length x y)
(cond ((or (eq u ‘undefined-integer)
(eq y ‘undefined-integer))
‘undefined-boslean)
((=xng)'t)
[{31])))

A MacPitts program is now run to check this new operator [Figure 6.6].

(pregram five== 4
;; Example of a MACPITTS algorithm to test a 4-bit
;; integer's equality with the number five.
;; <fflename)> := five==.mac
(def 11 pewer)
(def 1 greund)
(def 2 phia)
(def 3 phib)
(def 4 phic)
(def in port input (5 6 7 8))
(def out signal sutput 9)
;; Areset pin is needed to initialize the chip.
(def reset signal input 10)
(precess equality 0
first
(cond
s 7in"is"=="to S then set “out " to t,
((== in 5)(setq aut t)(go first))
;; Otherwise, test " in " again.
(t (ge first)) ) ) )
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V1. CONCLUSIONS

This thesis’ goal was to examine LS and show how it is used in two
silicon compilers: LBS and MacPitts. The thesis showed that LS is an
extension of LISP specifically aimed at VLS| synthesis. LISP's abflity to
treat functions as datas to create new operators was found to be the basis
for the versatile defstruct data structure generator. The main result of
the thesis is the incorporation into one document of enough information to
enable a YLSI designer to automate portions of the layout process or change
existing MacPitts functions to meet other needs. |

Fﬁr example, an examination of LS5's layout primitives and data
structures showed its compatibility with Caesar and CIF. However, since the
graphical editor now being used at the Nave] Postgraduste School is Magic, 8
method for using this format with LS 1s needed. The suggested approach is
to use the structure of LS programs that convert Caesar into LS and vice
verss; and 1nste&d, meke the conversion directly from CIF to LS. This would
make available a larger pool of circuits which have been converted to CIF
for incorporation into the compilers. Additionally, it would buffer the
system from other changes in graphicel editor file format since CIF is o
widely used formet.

Many possible changes to MacPitts have been recommended by Carison,
Froede and Larrabee; among these suggestions, is to allow pin locations on
a1l four sides of the chip. In 1ight of what has been presented in this thesis
this would be a fairly straightforward alteration.
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A. LAYOUT ERRORS
There are two types of errors associated with layouts created from

Macpitts: either the code has been improperly written, or the output CIF is
being plotted at the wrong scale.

An example of improper code is the erroneous specification of vdd, Vss
and output locations when a new organeile is created. In Section V1.B 8 new
organelle, " == “, was input into MacPitts. If different perometer"s [shown in
ToblehA.l] had been specified in the organelle structure, then the resuits of
Figure A.1 would result. Notice that the interconnecting lines have all
shifted to the right 3 A units.

TABLE A}
| ORGANELLE SPECIFICATION COMPARISON
Correct Erroneous
((eq infe ‘length) 58) ((eq Info 'length) 52)
((eq info ‘width) 40) ((eq infe 'width) 48)
((eq info ‘inputs) ‘(26 31)) ((eq infe ‘inputs) ‘(26 31))
((eq info ‘vdd) '(43)) ((eq infe ‘vdd) '(40))

((eq infe 'gnd) ‘(8 28)) ((eq infe 'gnd) (5 25))
((eq infoe 'daisy) ‘(51)) ((eq infe ‘daisy) '(48))
((eq info 'test) '(51)) ((eq info ‘test) '(48))

Additionally, the organelle length was specified to be several A\ units
longer than the layout a.ctuallg is, to prevent the output line (when routed
to the weinberger array) from shorting with the clock lines [See Figure A.2].

171

BOUORD AR T O R A% I S I N R ] EPS TN BN N TR v PR ~ AT AR TA VLA YE FE TSR I |
ey ".\Iyal\_'_ X ,nh' Aot B ae s O 8 o W P W A" s € . ) . . .. - -. -ow




©
-
N B i @
RS
NANN2
NNN=
VAR R z > : N N m
[F TSN . ) 7 X B AN AN ARIEARL AT ARRRAMRARARRN A SN R aw aey [l
A _—
N {1 2 M
W ma o ¢7I-
NS ' . o
L : i RPN LY. N . . o
; - .///////////m n-
’ ke
Ny B o] b : a
'y 1 O
. 1)< ;
, SJHEITH @ 1
i ¥ S | -
. : Wv -4
L 58 i 13 wF w.k. #* H P
L1©39Q-UO}3I®I| 3} 29dS-9| |PURBIQ-3IGJJODU]-ORU an@A} 3 A
(X642) SOYODU} TI@°F Si UCJLD W | t9|eDS —-- PAPAST PODY. PPFLZ] PPSE8 :1MOPUIM 430|dy)d i

0V TN o vy v G € I e " At A ACNOICRRRS C - € &




-y

v e e e B .)l«!& -~ ] -lyir‘lg..l?' 22 .‘v(!? o \.&.Ll oy ko™ 9 [ 4 nv ', . :.’.\I. - - oL, - A 2 . T

175
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The user now hes all of MacPitts evailable with the exception of the
orgenelles and library.

instead of running MacPitts every time a change is made, the
intermediate object code will be modified. Object code is generated when
five==.mac is run in the following manner:

% macpitts obj cif meint noopt-c neoept-d
nestat five==_mac ® > trash

#Create an object and CIF file. Redirect comments

*10 a trash file.

Now, assuming that the macpitts environment has been invoked as
shown sbove [% macpitts], two local files that contain commands to
change UNIX® directories and plot LS items are loaded.

- (include edit.l)
[load edit.i]
t

-> (include piot.l)
[lead plot.i]
t

- (minimum-feature-size! 200)
200

The object file that was generated by MacPitts, five==.0bj, is altered by
setting its data-path end controller to mil. After editing is complete, the
new file is called pin-test.obj and is shown below:

-> (enec cat pin-test.obj)

;; The first portion of the object is definitions
(((seurce reset)

(register sequencer-equality-state)
(seurce sequencer-equality-state)
(destination sequencer-equality-state)
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-> (thesis-plot (layout-object
(read (infile ‘pin-test.obj})) ‘pin-test.obj t)
:: The stendard statistics are output, except the control
;; unit and date path are empty.
Statistic - Contrel has 8 columas
Statistic - Circuit has 78 tramsistors
Statistic - Centrel has 0 tracks
Statistic - Pewer consumption is 8.834114
Watts . :
Statistic - Bata-path internal bus uses 0 tracks
Statistic - Bimensions are 1.640000 mm by
1.7180080 mm
;: The rest of the output is related to the plotting
;; function.
-> Windew: 8 164000 8§ 171800
sScale: 1 micren is 8.002805 inches (71x)
The plot will be 0.38 feet

This plot is shown in Figure A.3. The object file is modified again to
place the pins in different locations:

-> (enec cat pin-test-2.0bj)
;; A random pin ordering weas chosen.
(((seurce reset)
(register sequencer-equality-state)
(source sequencer-equality-state)
(destination sequencer-equality-state)
(pert sequencer-equality-next-state internal
ail)
(ssurce sequencer-equality-nent-state)
(destination sequencer-equality-next-state)
(label first equality 0)
(destination sut)
(seurce first)
(seurce in)
(legs five=)
(werd-length 4)
(pewer 11)
(greund 1)
(phia 2)
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